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which gives 
Au2mN 

15r 
and, finally, 

SmN 
asz= (gOl/oOo). 

For the normal state, 

ot»i= (ql)2. 
\5pVlT 

This attenuation agrees with Pippard's result for longi­
tudinal waves for ql< 1. Again the ratio is given by 

asi/ani = 2fo(eo). 

Tsuneto has obtained the same result by using a matrix 
density formalism and assuming that the interaction 

I. INTRODUCTION 

IN a series of papers that are as much as twenty years 
old, I. M. Lifshitz formally solved the dynamics of 

a crystal perturbed by a defect.1-4 He assumed that the 
normal modes and frequencies were known for the 
unperturbed lattice, and by the use of the dynamic 
Green Vfunction matrix was able to reduce the number 
of degrees of freedom of the perturbed problem to a 

* Work supported in part by the U. S. Atomic Energy 
Commission. 

*I. M. Lifshitz, J. Phys. U.S.S.R. 7, 211, 249 (1943); 8, 89 
(1944). 

2 1 . M. Lifshitz, Zh. Eksperim. i Teor. Fiz. 17, 1017 and 1076 
(1947). 

s I. M. Lifshitz, Zh. Eksperim. i Teor. Fiz. 18, 293 (1948). 
4 1 . M. Lifshitz, Suppl. Nuovo Cimento 3, 716 (1956). This 

English review article contains more references than those given 
above. 

between long-wavelength sound waves and electrons in 
a metal is mainly electromagnetic. A similar result was 
obtained by BCS for longitudinal waves for ql>l by 
computing the net rate of absorption of energy in the 
superconducting state produced by direct absorption 
and induced emission of the imposed acoustic phonons. 
Since our result for the attenuation coefficient of longi­
tudinal waves is similar to that obtained by Pippard, 
we may assume that the effect of the space charges may 
be neglected even in the normal state for ql<l. How­
ever, when ql>l, the above derivation which neglects 
space charges would not give the correct limit for an. 
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manageable size, essentially equal to the number of 
changes induced by the perturbation. 

Subsequent work has been devoted mainly to one 
aspect of the perturbed problem, namely, the appearance 
of discrete frequencies belonging to lattice modes 
localized around the impurity.5-7 The Green's-function 
matrix method may be readily applied to the electron 
impurity problem if Wannier functions are used, as 
shown by Koster and Slater.8-9 In this case, the local 
modes correspond to bound electronic impurity states. 

Lifshitz also discussed the problem of the remaining 
modes which still have running wave character.3,4 As 

5 M. Lax, Phys. Rev. 94, 1392 (1954). 
6 E. W. Montroll and R. B. Potts, Phys. Rev. 100, 525 (1955). 
7 A. A. Maradudin, P. Mazur, E. W. Montroll, and G. H. 

Weiss, Rev. Mod. Phys. 30, 175 (1959). 
8 G. ]. Koster and J. C. Slater, Phys. Rev. 95, 1167 (1954). 
9 G. J. Koster, Phys, Rev. 95, 1436 (1954). 
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The Green's-function matrix method first developed by I. M. Lifshitz is applied to the problem of the 
scattering of phonons by a localized perturbation in the lattice. The scattering can be described by a t matrix 
that is localized to the same extent as the perturbation and has similar symmetry properties. The t matrix 
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one might expect, these solutions consist of an incident 
plane wave plus scattered waves. The scattering matrix 
can, in principle, be found exactly, without recourse to a 
perturbation series. Quite recently the scattering of 
lattice waves by isotopes has been treated in detail 
by Takeno.10 His calculations of the cross-section yield 
resonance scattering, under appropriate circumstances, 
from virtual local modes associated with the impurity. 
The possibility of such modes had been pointed out by 
Brout and Visscher,11 and the analogous virtual-bound 
electronic states had been discussed using the Koster-
Slater formalism by Wolff.12 

Our aim is to present the details of the general solu­
tion of the scattering problem and to discuss the scatter­
ing amplitude when the perturbation is large so that 
the Born approximation breaks down. Two cases of 
particular interest are "hard-core" scattering from a 
singular perturbation and resonance scattering from a 
virtual local lattice mode. 

Phonon scattering by defects can be studied experi­
mentally by measuring low-temperature thermal con­
ductivity. A variety of data indicates that resonance 
scattering of phonons may have been observed experi­
mentally13-16 ; in fact, the data motivated a search for a 
mechanism, which in turn led to the Green's-function 
method to be presented here. 

A disadvantage of the use of Green's functions for 
three-dimensional problems is that they must be 
calculated numerically, even for the simplest cases. 
Such a calculation is necessary for quantitative work; 
nevertheless, quite a bit of information can be learned 
from qualitative arguments which have the advantage 
of not being restricted to a given model of the lattice. 
The latter course is taken here. 

II. BACKGROUND 

A. Perfect Lattice 

The formal theory will be stated in quite general 
language. Consider a perfect crystal with N unit cells 
located at points given by the set {L} of primitive 
translation vectors. There are r atoms per unit cell 
located at bm, m=l, 2, • • •, r with respect to an origin 
in the cell. The equilibrium position of the rath atom 
in the Lth cell is L^=L+bm. The displacement um(L) 
is defined in terms of the actual position of this atom 
Xro(L) by 

um
a(L) = Xm

a(L)-Lm
a. 

a = l , 2 , 3 . ( 

We shall find it convenient to drop the indices m, a and 
introduce a new index i (or j) running from 1 to 3r such 

10 S. Takeno, Progr. Theoret. Phys. (Kyoto) 29, 191 (1963). 
11 R. Brout and W. Visscher, Phys. Rev. Letters 9, 54 (1962). 
12 P. A. Wolff, Phys. Rev. 124, 1030 (1961). 
13 M. V. Klein, Phys. Rev. 122, 1393 (1961). 
14 W. Gebhardt, J . Phys. Chem. Solids 23, 1123 (1962). 
15 R. O. Pohl, Phys. Rev. Letters 8, 481 (1962). 
*« C. T. Walker and R. O. Pohl, Phys. Rev. 131, 34 (1963). 

that for the first atom in the cell, i=l> 2, 3 corresponds 
to m==l, a = l , 2, 3; for the second atom in the cell, 
i=4 , 5, 6 corresponds to ra=2, a = l , 2, 3; etc. This 
change will simplify the notation and make it super-
fically the same as for one atom per unit cell. In the 
new notation we have 

Z/=Zm«, i = l , . . . , 3 r . (2) 

In the harmonic approximation, the Hamiltonian is 

#o=§ Z Z F«(L,L')**(L)«'(L') 
L,L' ii 

+iEM£^(L)J . (3) 

The mass of the rath atom in the cell is given by Mi. 
The spring constant or force constant coefficient 
matrix F^'(L,L/) is given in terms of the potential 
energy V of the lattice by 

F*'(L,L') = (a2F/d«*(L)d«'(LO)«-o. (4) 

The lattice vibration equations of motion can be 
obtained from Eq. (3). We assume a time dependence 
of the form exp(—iut) and define 

^• (L , I / )= (MiMj)-
1fWi^lyV), 

and 
vi(L)=(Miyt*ui(L). (5) 

The equations of motion then give 

E (^^(L,L0-co25^-5(L,L0)^*(L0 = O (6) 

or, in abbreviated matrix form, 

(A-u2I)v=0. (60 

The normalized eigenvectors are running waves or 
phonons: 

v(k\) or vkX
i(L) = N-^SkX

i(eik^). (7) 

The wave vector k is "quasicontinuously" distributed 
throughout the first Brillouin zone, and the eigenvalues 
w2(k\) form a quasicontinuous spectrum or band. The 
polarization index A runs from 1 to 3r. Some writers use 
Lm instead of L in the exponent; this changes the phase 
of the polarization vector 8k\l. 

B. Perturbed Lattice 

Let us now put a defect into the lattice. This will 
change some of the masses to Mi+AMi(L) and some of 
the spring constants to Vi^(L,V)-\-AVij(L,1Lf). The 
equilibrium positions generally will be shifted somewhat 
from LOT. The derivatives in the new potential matrix 
F + A F are to be evaluated at the new equilibrium 
positions, and ul(L) now refers to displacements from 



1502 M I L E S V. K L E I N 

those positions. The equations of motion become 

(A-u2I+aT)v=0, (8) 

where 

«r*'(L,L ;) = (MiMd-WAVVfaL') 
-(AMi/Mi)^^8(LyV). (9) 

The strength of the perturbation is characterized by 
the dimensionless coupling constant a. 

C. True Local Modes 

To lay the foundation for the treatment of virtual 
local modes, we want to discuss briefly the case of true 
local modes, that is, modes with a frequency different 
from any in the quasicontinuous spectrum of the 
unperturbed lattice. We can define the Green's-
function matrix by 

G ^ H ^ - w 2 / ) - 1 , (10) 

which is diagonal in the phonon representation 

(&'\ ' ] G(co2) | k\) = «**'«*' ( o ^ - c o 2 ) " 1 . (11) 

Explicitly, we can write17 

G=Er(ifeX>(feX)t(coitx
2-co?)-1, 

or 
1 e x p [ ; k . ( L - L O ] S a ^ a ' * 

G*'(L,L') = - £ — . (12) 
Nk* (co,x2~co2) 

As the inverse of a symmetric matrix, G(co2) must also 
be symmetric. Multiplying Eq. (8) on the left by 
G(co2) gives 

[ l+a:G(a) 2)r>=:0, (13) 
or 

v=-aGTv. (130 

This set of equations can be solved explicitly, in 
principle, if the defect is sufficiently localized; i.e., if 
r is nonzero only on a small set of indices. In this case, 
we can write, perhaps with some relabeling of rows and 

If the defect is localized near the origin, the sum (or 
integral) over k will yield a decreasing contribution as 
\L\ increases, because of the rapid oscillations of the 
exponential. 

Such local modes can be shown to result from a 
sufficiently large decrease in mass AM/M<0 or from a 
sufficiently large increase in force constant. 

17 An asterisk denotes the complex conjugate; a dagger, the 
Hermitian conjugate; and a wavy line, the transpose. 

columns, 

r-C D' (i4) 

where 7 is a much smaller nXn symmetric matrix. 
Those points in the lattice and those components where 
r is nonzero we shall call the "space of 7" . We now 
write G as a matrix of matrices, 

G V ) = ( J, (15) 

where the nXn matrix g is defined on the space of 7, 
R is a {3rN—n)Xn matrix, and B is a symmetric 
(3rN— n)X{3rN— n) matrix. We also write for the 
3WV-dimensional column vector 

\vj 

where vt is n dimensional. We note that Tv = yvi and 
GTv=Gyvi=gyvi+Ryvi. 

Thus, Eq. (130 becomes two equations: 

flz= — ag(o32)yvi, (16) 

an eigenvalue, eigenvector problem in the localized 
space of 7, and 

Vr=-aR(tf)yvly (17) 

which gives the "long-range" displacements in terms of 
the solutions of Eq. (16). 

Solutions of Eq. (16) exist if and only if 

de t | l+ag(co 2 )7 |=0 . (18) 

If a is sufficiently small, there are no solutions of this 
equation because g(co2) is bounded as w2 approaches an 
edge of the quasicontinuous spectrum from outside. 
The modes are local for co2 outside the band in the sense 
that the vector vr falls off rapidly with distance from 
the impurity. This can be seen by writing out Eq. (17) 
explicitly: 

III. SCATTERING AND THE T MATRIX 

A. Formal Solution of the Scattering Problem 

If co2 is in the band, the singularity in Eq. (17') at 
wa2 = w2 will pick out plane waves of this frequency at 
large distances | L | . Exactly how this is done will 
depend upon how we decide to integrate near the 
singularity. The problem is best formulated using the 
language of scattering. 

1 e x p p k . ( L - L O ] ^ x i ^ x r T - ( L / , L - ) ^ ( L , 0 
* < ( L ) = ( - > - E E I — ; • (170 

N L ' , L " r,s fc.X 0)k\—U 
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We look for a solution to Eq. (8) of the form 

v = v(ko\o)+w, (19) 

where fl(&oAo) is the plane wave of Eq. (7) for phonon 
mode &0A0. Equation (8) yields 

+ (A-cc*I+yT)w^Q. (20) 
We now set 

o)2 = ooicQ\Q
2+ies~uo2+, (21) 

where e is an inflnitesimally small positive number. 
The matrix A—co2+7 now becomes Hermitian and has a 
unique inverse 

G+ = G(a>o2+)= (A-ox?+iyi. (100 

We can multiply Eq. (20) on the left by G+ to obtain 

(I+yG+T)w= -aG+Tv(ko\o). (22) 

The first-order perturbation result is obtained by 
neglecting the second term on the left in Eq. (22): 

can use the relation 

w^— aG+Tv(koho). (23) 

The T matrix is defined so that the correct solution 
takes the form 

w=-G+T+v(ko\o). (24) 

This will be true if T satisfies the matrix equation 

T+=aT-aYG+T+^aT-aT+GJ<-T. (240 

The solution is 

T+= (I+aTG+)-1aT=aT(I+aG+T)-\ 

or 
T+=aT+a2TG+T+a*TG+TG+T+ • (25) 

The last form is the perturbation expansion of the 
solution, which converges well for small a. 

The choice (21) for co2 and, hence, for the way of 
handling the singularities in G guarantees that we have 
chosen the outgoing asymptotic scattering solution.3'4,9 

The proof of this statement begins by writing Eq. (24) 
explicitly: 

1 exp[*.(L-L/)]5*x<«*xr* 
W<(L)=(-)- E L I — 

N L ' . L " r,s k,\ (CO** — ^ 0 — ^ ) 

xr-(L',L'0+^oXos(L , /). 

A stationary-phase argument can be used to show that 
the integral picks out those values of k which make the 
denominator small. Such values of k correspond to 
outgoing waves. A similar result can be obtained from a 
time-dependent calculation. If the perturbation was 
" turned on" in the distant past when the solution was 
v(t) = v(ko\o)e~i<cot, the solution in the present becomes 
[v(koko)+wle~~iwot with w given by Eq. (24). 

The GreenVfunction matrix G(cx>2+) is complex. We 

1 1 

x—ie x 
(26) 

where P(l/x) denotes the principle value of 1/x, and 
8(x) is the Dirac 8 function, to obtain 

where 

and 

G+ = Gi*(co2)+;Gj(co2), (27) 

GR(cc2) = PZ: » ( A \ y ( A X ) ^ 2 - ^ ) - 1 , (270 

GI(G>2) = TZ v(k\)tf(k\)8(ak}?-a)2). (27") 

For large |L—L'| one can again apply a stationary-
phase argument to show that GR and Gi are comparable. 
In fact, in the limit of large distances we have GR —•» iGj. 
In this case, only a few phonon states are picked out 
in both expressions, namely, those where a)k\

2=a)2. At 
short range we have \GR\^>\GI provided co2 is far from 
its value at the edge of Brillouin zone (i.e., roughly 
for CO2/O)D2<3C1, coD = Debye frequency). Under these 
conditions the exponential will not oscillate very 
rapidly and will allow a relatively large number of 
phonon states to contribute to GR, whereas the delta 
function severely limits the number of states that can 
contribute to Gi. 

B. Connection with Thermal Conductivity 
As usually treated,18-19 the calculation of the thermal 

conductivity involves a Boltzmann equation for the 
occupation numbers Nk of the form 

->y. drift \ Ot / Coll 
(28) 

The collision processes occurring on the right side of 
Eq. (28) will be of at least two types: (1) inelastic or 
three-phonon processes characteristic of the defect-free 
anharmonic crystal; and (2) elastic scattering by a 
random distribution of n impurities. It is usually 
assumed that there is no interference between the two 
processes so that the collision terms add. A case where 
this assumption apparently does not hold has been 
discussed by Carruthers20 and by Abeles, Beers, Cody, 
and Dismukes.21 In this paper we assume no interference. 

The elastic-collision term as calculated by pertur­
bation theory takes the form 

( ) = / K(k,kf)(Nk,-Nh)d*k', (29) 
\ dt / e l . coll J 

18 P. G. Klemens, in Solid State Physics, edited by F. Seitz and 
D. Turnbull (Academic Press Inc., New York, 1958), Vol. 7, p. 1. 

19 P. Carruthers, Rev. Mod. Phys. 33, 92 (1961). 
20 P. Carruthers, Phys. Rev. 126, 1448 (1962). 
2 1B. Abeles, D. S. Beers, G. D. Cody, and J. P. Dismukes, 

Phys. Rev. 125, 44 (1962). 
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where the kernel K is proportional to nN^Y-kk'l2 

X$(co&-—Co*,')- The impurity concentration is given by 
nN"1, and Tkk' is the matrix element of T for a single 
impurity between two phonon states. When the defect-
phonon interaction is strong, but the concentration of 
the randomly distributed defects is small, one must 
replace Tkk' in the above expressions by the correspond­
ing matrix elements Tkkt+ of r(w0

2 +), where coo=co&=cow. 
This statement has been proven (i.e., the T-matrix 
Boltzmann equation was derived from first principles 
starting with the equation of motion for the density 
matrix) for electrical conductivity with elastic scatter­
ing of electrons by Luttinger and Kohn.22 They treated 
the electric held as causing a small perturbation of the 
electron-plus-scatterer system. For the thermal conduc­
tivity the corresponding temperature gradient cannot 
be introduced into the Hamiltonian, and it is probably 
better to start with a correlation-function expression.23 

We have not carried out the derivation but feel quite 
confident that it would give the above result. This 
confidence is based on the mathematical similarity 
between a drifting electron gas producing an electrical 
current limited by elastic scattering from defects and a 
drifting phonon gas producing a thermal current limited 
by elastic scattering from defects. 

We shall, therefore, use T instead of V in the calcu­
lation of thermal conductivity. Interesting possibilities 
arise when the two are quite different; that is, when 
perturbation theory breaks down. We now examine 
some of these possibilities. 

C. Nonperturbat ive Behavior of T 

We first note from Eq. (24') or (25) that T is localized 
to the space of y. We can, therefore, write 

K »)• <30) 
where 

t=ay(l+ag+y)~l, (31) 

and where the Green's-function matrix in the space of 
7 can be written g+=gR(o)o2)-\-igi(o)Q2). I t is convenient 
to work with the eigenvectors e(j) and the eigenvalues 
Hj of the matrix g+7=g(coo2+)7: 

g*-ye(j) = N<J). (32) 

Corresponding to the two parts of g, there will be two 
parts of fi=Reju+i Im/x: 

[Reg]ye(j) = [Re/x>( i ) , 

[lmg~]ye(j) = [Im/z>(jO. 

As we shall see, the eigenvectors can often be deter­
mined by symmetry considerations and can be assumed 
to form a complete orthogonal set in the space of 7. If 

22 J. M. Luttinger and W. Kohn, Phys. Rev. 109, 1892 (1958). 
23 H. Mori, J. Phys. Soc. Japan 11, 1029 (1956); R. Kubo, ibid. 

12, 570 (1957). 

this is true, we can then express i as follows: 

n e(i)e(i) 
t=aZy . (33) 

i=l 1 +/^G! 

If the eigenvalues Hi(o)2+ie) satisfy | / z ; a | » l for all 
i, we have the strong coupling limit and can write 

n ye(i)e(i) 
t=Z , (34) 

a result independent of the coupling constant. The t 
matrix remains finite even for a "singular" perturbation 
ay. This result is well known in scattering theory. 

A resonance in the scattered amplitude will occur at 
a frequency o)2 = ooi2 satisfying 

l+aRe/x z (^ 2 ) = 0. (35) 

Near such a resonance we can write 

d 
l+afxi(oo2+)^a(o)2—o)i2)—[Re/x*(co2)]w^2 

do)2 

+iaIm.fxi(o)i2). (35') 

Near a large enough resonance only the lih term in 
Eq. (33) is important. In such a case we have 

je(l)e(D 
/ « (36) 

(rf-^R^m^+ilM2) 
where 

d 
Ri'(<*?) = — [ R e / ^ 2 ) ] ^ , (37) 

doo2 

and 
/z(co*2) = Im[Mz(on2)]. (38) 

The resonant peak in the intensity \t\2 is down to 
half-maximum when Aco2 = co2—wz2=±5W, where 

hW) 
5 = . (39) 

o)?Ri'W) 

From this result and Eqs. (32;) we see that the peak is 
narrow when, roughly speaking, the imaginary part 
of the localized Green's function is much smaller than 
the real part. As pointed out in connection with Eq. 
(27), this should be the case for C J ^ W D 2 ; i.e., for long-
wavelength acoustical modes. 

Equation (35) is equivalent to 

de t | l+aReg(an 2 )7 | = 0 . (40) 

This condition is as close to Eq. (18), the condition for 
a real local mode, as one can get with GO2 in the quasi-
continuous spectrum. We are, therefore, justified in 
referring to Eqs. (35) and (40) as the condition for the 
existence of a virtual local mode. The smaller the 
frequency of this mode, the narrower the resonance 
peak, and the more "real" the virtual mode becomes. 
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III. SOME EXAMPLES OF VIRTUAL LOCAL MODES 
AND RESONANCE SCATTERING FROM THEM 

A. Heavy "Isotopic" Impurity 

Suppose the wth atom in the unit cell at the origin 
has a different mass Mm'>Mm, but there are no changes 
in force constant. Then, in our original notation, the 
space of 7 is the 3X3 space where L = 1/ = 0, m=mf, and 

Mm'-Mm 

7 = o)26ab, a,b=l,2,3. (41) 
Mm 

If the mih atom is at a site of cubic symmetry, the 
reduced Green's-function matrix is also diagonal: 

g^(0)
2+) = (37V)"1 L bah(uB?-o?-U)-1. (42) 

k\ 

Equation (40) becomes 

/M'-M\ 1 1 
l - ( ) co 2 —PE = 0 . (420 

\ M J 3N k\ coa
2-co2 

For small co2, we can write 

(3N)~^P £ (co^-co 2 ) - 1 - (3N)-1 E ukr
2 = Qo>D-\ 

k\ k\ 
where Q is a constant of the order of, but less than, 
unity. We then have 

1 = Q(M'-M )U2/MG>D
2 . (42") 

Thus, for a low-frequency mode for which (O>/COD)2<<C1, 
we must have (M'-~M)/M**M'/M2>1. Such an 
"isotope" is not likely to be found in nature. 

The possibility of a virtual local mode for a heavy 
isotope was pointed out by Brout and Visscher in 
connection with the Mossbauer effect.11 Takeno has 
recently calculated the resonance scattering cross 
section numerically for a simple model of the lattice.10 

The reader is referred to his paper for a more precise 
estimate than that of Eq. (42"). He points out that 
there is a solution of Eq. (42') in the band for a light 
isotope in addition to that for a true local mode outside 
the band. The frequencies of these two modes approach 
each other as Am/m increases from negative values 
towards zero. They meet at the band edge for a critical 
value of Am/m. Just before this happens the width of 
the virtual level is quite narrow because of the small 
density of phonon states available for decay. Resonance 
scattering from such a level would probably be masked 
by strong three-phonon processes at these frequencies. 

B. Substitutional Impurity Bound with Weaker 
Force^Constants to Nearest Neighbors 

The true local modes resulting from an increase in 
force constants have been discussed by Takeno24 and 

24 S. Takeno, Progr. Theoret. Phys. (Kyoto) 28, 33 (1962). 

by Lengeler and Ludwig.25 These authors chose to deal 
with a monatomic simple-cubic lattice with central- and 
noncentral-force constants between nearest neighbors 
only. The substitutional impurity was bound with 
different force constants to its neighbors. Some aspects 
of the related virtual normal mode problem have been 
discussed by Visscher,26 again as they pertain to the 
Mossbauer effect. 

Since we do not intend here to obtain exact numerical 
results, we shall not use a particular model for the 
unperturbed lattice, except that it be a monatomic 
Bravais lattice with cubic symmetry. The results can 
be easily generalized to simple diatomic lattices such 
as the NaCl structure. Calculations for other than cubic 
symmetry could be carried out in a similar manner. 
We insert a substitutional impurity at a site of octa­
hedral symmetry. Its mass is assumed to be unchanged 
(it would have to change by a large amount to affect 
the conclusions to be reached), but the central-force 
constant to its six octahedral nearest neighbors is 
changed by an amount aMo>m

2, where o)m is maximum 
frequency of the unperturbed lattice and where a is 
negative and dimensionless. 

The perturbation matrix T of Eq. (9) becomes 

r^(L,L') = cow
2 £ (8Ln-8LO)(dLrn-dL'o)nW, (43) 

n 

where the n are unit vectors to the nearest neighbors: 

ii, $2, $z being unit vectors along cube axes. The sum is 
over all six values of n. Let a be the nearest neighbor 
spacing. 

There are only six degrees of freedom for this problem 
represented by the relative displacements along the six 
bond directions: 

a(n) = [ v ( n ) - v ( 0 ) ] - n . (44) 

We can normalize the x(n) and use them as a basis for 
the space of y. From Eq. (43) we see that y is already 
orthogonal: 

(n / | 7 | n ) = a>TO^„^. (45) 

This result is more general than the specific model of 
octahedral neighbors. ^ P 

Since y and g both have octahedral symmetry, the 
eigenvectors of the matrix yg form irreducible represen­
tations of the group Oh.27 Those in each different 
irreducible representation will generally have a different 
eigenvalue /*. The reduction of the representation (44) 
begins by a splitting into states that are even and odd 

25 B. Lengeler and W. Ludwig, Z. Physik 171, 273 (1963). 
26 W. M. Visscher, Phys. Rev. 129, 28 (1963). 
27 L. D. Landau and E. M. Lifshitz, Quantum Mechanics 

(Pergamon Press, Inc., New York; and Addison-Wesley Publish­
ing Company, Inc., Reading, Massachusetts, 1958), p. 314 if. 



1506 M I L E S V . K L E I N 

TABLE I. Character table for the irreducible representations of t aken to be 
the group 0. The last two rows give the characters of the even 
and odd representations in Eqs. (47') and (47"). 

Ai 
A2 
E 
F2 
Fi 

Even 
Odd 

E 

1 
1 
2 
3 
3 
3 
3 

8C3 

1 
1 

- 1 
0 
0 
0 
0 

3C2 

1 
1 
2 

- 1 
__1 

3 
- 1 

6C2 

1 
- 1 

0 
1 

- 1 
1 

- 1 

6C4 

1 
- 1 

0 
- 1 

1 
1=E+Ai 
l = Fi 

and 
e1(£) = 6 - 1 ' 2 [ 2 £ ( l ) - £ ( 2 ) - £ ( 3 ) ] J 

e2(£) = 2 - ^ [ £ ( 2 ) - £ ( 3 ) ] . 

under the inversion n —> — n: 

*(=bl) = 2 - " 1 ' [ ± 0 ( l ) + £ ( l ) ] , (46) 
where 

and 

E{i) = 2~li'2[%(i)-x{-i)~]J 

0(i) = 2-v2[x(i)+x(-i)~]. 

(47) 

The matrix elements of g between the displacements 
of Eq. (44) are 

(n'\g\n) = Y, (w' l^h)^ 2 -^ 2 -^) - 1 , (48) 

where the numerator is given by 

( ^ | A r | w ) = = { [ c o s ( k . n a ) - l ] [ c o s ( k . n r a ) - l ] 
+ sin (k • na) sin (k • n'a)} 

X(€ f cx-n)(£,x-n /) . (49) 

After the splitting of Eq. (46) the numerator becomes 

{Ei.\N\Ed = 2sm(kid) sin (ft/a) £ a ^ x * ' , 

(Oi> IN \ Oi) = 2[cos ( M - 1 ] (50) 

From symmetry considerations we can write 

«m2(OH*|O0 = ««'M(/^), (51) 

Equation (45) becomes 

(Oi'\y\Oi) = a)m
2dii>, 

(Ei>\y\Ei) = um
28ii', 

' ' ' where MC^I) is the threefold degenerate eigenvalue 
The remaining reduction can be accomplished via the belonging to representation Fx. I t is given by 
character table for the group 0 shown in Table I. 

The odd representation is already reduced and will M ^ 2 ) = 2awW £ [ c o s ^ - l ] 2 ^ 1 ) 2 

give a triply degenerate eigenvalue belonging to the 
eigenvectors 0(1), 0(2) , 0(3). The even representation 
reduces to a totally symmetric "breathing" mode in F o r t h e e y e n m o d e i n p r e s e n t a t i o n A ly we have 
representation A! with eigenvector 

T.^rr?(EAg\E,)ei{Al)^lx{A1)eAA), (53) 
e(^1) = 3 " ^ [ £ ( l ) + £ ( 2 ) + E ( 3 ) ] 

and two doubly degenerate modes orthogonal to it in where ei(Ai) = l/-\/S, i=l, 2, 3. 
representation E having eigenvectors that can be This gives 

X f a j ^ - w 2 - ^ ) - 1 . (52) 

M(^!,co2) = cow
2E ( i^g |£<)=(2co m y37\0 . £ 

[sin (ft xa) 5 ^ + s i n (k2a) £*x2+sin (ft3a) Sk\
zJ 

2com
2 (1 — cos2ftia)(^A;x

1)2+2 sin(ftia) s i n ^ a ) ^ 1 ^ 2 

= £ . . 
N fcx cok\2—u2 — ie 

F r o m a similar equa t ion for mode E we get 

com
2 [ s in (ft i<x) c^x1—sin (ft2a) ^ x 2 ] 2 

M(E,co2) = — E 
N k\ o)k\2—u>2—ie 
2com

2 (l-cos2ft1<z)(^x
1)2-sin(ft1a) s i n ^ a ) ^ 1 ^ 2 

yY a 

(54) 

(55) 
WAX — &r — fl€ 
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The second term in Eqs. (54), (55) will probably be 
much smaller than the first term. I t will be zero under 
the assumption that co&x is independent of X, for then 

x 

I t is also zero for a simple cubic lattice with nearest 
neighbor forces28; the GreenVfunction matrix is 
diagonal in i and j in such a model. For other models 
Gij will not be diagonal, but we expect the nondiagonal 
terms to be much smaller than the diagonal terms. 
This statement holds, for example, for the numerical 
values of the static Green's function [i.e., G(co2 = 0)] 
calculated by Flinn and Maradudin for a fee lattice 
with central forces to nearest neighbors.29 Thus, for 
rough estimates we may set 

M(^i)-M(^)«2comW-1 £ ( l-cosMiaX&x1)2 

&x 
X t c o a 2 - ^ - ^ ) - 1 . 

A similar case, that of changed force constant to (111) 
nearest neighbors is discussed in the Appendix. 

C. Some Properties of the Eigenvalues of gy 

We consider Re/x(co2) for both positive and negative 
co2. The latter case is useful for consideration of the 
stability of the perturbed lattice. We see directly from 
Eqs. (52), (53), (55) that JJL is positive for co^O, and it 
decreases monotonically to zero as co2—> — °o. In 
addition it is clear that /J, is negative for co2>cow

2, the 
maximum lattice frequency, and its magnitude de­
creases monotonically to zero as co2 —> + °°. 

I t is also true that 

(^co2)[ReM(a>2+)]0>0. 

To prove the statement, first convert the sum over k 
to an integral 

BY L A T T I C E D E F E C T S 

some point on the surface. The function 

1507 

Px(co2)- f [d*Sx(a>*)\da>k>?/dk\~i (56) 

is the density of states for branch A. For small co2, p\ is of 
order co. We can, therefore, express Re^t as an integral 
of the form 

Re/x(co0
2) = P 

r<*m2 

'/ /("2)("2 

Jo 
-co0

2)-^co2, (57) 

where /(co2) is positive and of order co3 for even modes 
and of order co5 for odd modes. 

Thus, we can write 

r"m2 d 1 
(d/da>o2) Re/* M = - / / (o> 2 )—P Jco2 

Jo 

•/. b / (-
1 

-(/co2. (58) 

We have made use of the fact that / (0) = /(com
2) = 0. 

This gives the desired result, 

{d/doP) ReM(co2)0= • f 
Jo 

[ (d/dco2)/(co2)]ar W > 0. (59) 

m. \k X 

Now divide dzk into a piece d2S\(o>2) of the constant 
frequency surface for polarization A times dkn, the 
change of k in the direction normal to the surface. The 
latter can be expressed as dkn=dco2/1 doi^/dk \. We now 
carry out the integral over the constant frequency 
surface. For example, Eq. (52) gives 

f ]d*Sx(a>2)(cosha- 1)2(<W)21<W/<*I"1 

= px(<o2)< ( c o s ^ a - l)2(&x1)2>^,x, (520 

where we have used the mean-value theorem to express 
the integral in terms of the value of the integrand at 

28 H. B. Rosenstock and G. F. Newell, J. Phys. Chem. 21, 1607 
(1953). 

29 P. A. Flirm and A. A. Maradudin, Ann. Phys. (N. Y.) 18, 81 
(1962). 

A general feature that holds for all perturbations is 
the inequality, 

l + a M ( 0 ) > 0 . (60) 

This follows from the requirement that the perturbed 
potential energy matrix at co2 = 0, A+T, must be positive 

definite. Thus, for any nonzero vector U—\ , with u 
[vj 

in the space of 7, and v in the orthogonal space, we 
must have 

0<{U,(A+T)U)=(U,A(1+GT)U). (61) 

We write the G matrix by Eq. (15) as 

•c : ) • (15) 

where g is in the space of 7. Similarly, we write 

' a H\ 
A--

\H C/ 

where a is in the space of y. The condition I = AG gives 

ag+SR=l, 

Hg+CR^0, 

aR+HB = 0, 

nR+CB=\. 

(62) 
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RE/i(<u2) ' 

+ 1 
+ lai 

0 
1 

la'i 

i 

! 
2 \ 2 

1 \ 1 
l«f 
\\^~ 

s 

— 2 • 

or 

FIG. 1. Qualitative behavior of the real part of //, the eigenvalue 
of gy as a function of co2. The solid line represents proven func­
tional behavior as discussed in the text; the dashed line represents 
a reasonable way of connecting the solid curves. Irregularities 
should appear wherever the density of states p(w2) has a dis­
continuous change of slope (but not at the origin). These are not 
shown. 

Let u be an eigenvector of gy with eigenvalue JJL and let 

v=-C~lHu, (63) 

so that 

fa H\/u\ /au+Hv\ /au—HC~lEu\ 

\H c)\v) \Hu+Cv) \ 0 / 

This gives 

= (1+aju) («, (a-HC-^u). (64) 

From the second of Eqs. (62) we have R= — C~lHg, or 
with the first of Eqs. (62), ag-HC-lHg = 1. This gives us 
a relation for the matrix in Eq. (64): a~HC~1H=^g~1. 
This is positive definite because G and g are. Thus, we 
have 

0<(l+afji)(u,gu) or 1 + Q : M ( 0 ) > 0 . 

This inequality coupled with the monotonic decrease 
of M(CO2) for co2<0 guarantees that there are no local-
mode solutions having an imaginary frequency. This 
is another way of stating that the perturbed lattice is 
stable against small displacements from equilibrium. 

The condition (60) implies that the "strong coupling 
limit" discussed in Sec. I I IC cannot exist for a 
decrease in force constant where a<0. I t can occur, 
however, for large positive a. This corresponds to 
hard-core scattering; i.e., scattering from a very stiff 
substitutional impurity. 

The qualitative behavior of Re/x(a>2) is shown in 
Fig. 1. The resonance condition Re/x(co2) = —1/ce gives 
a virtual mode at ccv

2 for negative a. Real local modes 
are found at coz

2>com
2 for positive a. 

D. The Scattering Amplitude 

For our simple example of changed force constants y 
is diagonal in the eigenvectors of gy. This allows us to 
express t near a resonance in mode / approximately by 

K L E I N 

Eq. (36) as 
o)m

2e(l)e(l) 

or for the matrix element 

^Jlv{k'W)e{l)J_Kl)v{k\)^ 
(*'X' I * I k\) = . (65) 

The contribution to the Born approximation result 
(Jfe'X' 171 k\) from mode I is the numerator of Eq. (65) 
times a. Thus, the resonance represents an increase of 
the scattering probability by the factor 

a-2{[(co2-o)z2)^/(coz2)]2+/z(co,2)2}-1. (66) 

We can get some very rough estimates of the imagi­
nary part of ju(co2) as follows. For an odd mode, we get 
from Eqs. (52), (52'), and (56), 

ImM-27rcomW-1 £ (cos^1a-l)2((§,x
1)25(co^2-a)2) 

= 2 W a 8 ( & r 8 ) - 1 £ px(co2)((cos^1^-l)2(^x1)2}co2,x. 
X 

For low frequencies we expand the cosine and further 
suppose that the polarization vectors point along the 
cube axes and that the Debye approximation holds with 
a single sound velocity c. Thus, we can write 

p(w 2 ) = 27TC0/c3, 

and 

< (cos^ i a - l ) 2 (S .x 1 ) 2 ) ^ I x= i^ iV) f c wv c
2 =^ 4 ^~ 4 / 20 , 

where we have estimated the angular average for the 
case of isotropy, 

(fti4/*4>=<cos4^> = i . 
This gives 

Im/z = 2iro>rfaz ( fc r 8 ) -^™^ V a 4 . 

The Debye frequency is defined by 

\ = a?{W)-l\ p(co2)dco2, 
Jo 

or 
l = coz>sa3/(27r2c3). (67) 

Our estimate then becomes 

ImM=8.4(co/wi>)5. (68) 

For the even mode the imaginary part of /x can be 
written from Eq. (53): 

Im/x(co2)-27ro;jD
2/(3iV) £ ( s i n & i a ^ + s i n ^ c ^ x 2 

fcX 

+sin&3a£/cX3)2<5(co/cx
2—co2), 

= 27rcoD2G3/(247r3) £ p x ^ X s m & i G ^ x 1 

X 

+ sinl2a^a2+sin^3a^/cx3)2)w
2,x . 
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Under the same assumptions used in the previous case 
this becomes 

((smkiaSk\1+sink2aSk\2-\- sin£3a £&x3)2) ~ f& 2a2 = 2co 2a2/c. 

Then we have 

Im/x« f TTCODV (STr^-^Tr^c-n^a2 =15.2 (CO/COD)3 . (69) 

The real part of the denominator is not easy to 
estimate, even roughly, without a realistic model of the 
unperturbed lattice. We can use Eq. (58) and note that 

/(«2) = gr-1ImM(co2) = 0(ft)/coi>)8 or O^/co^)5 (70) 

for even and odd modes, respectively. Very rough esti­
mates indicate that for (CO/COD )2<<Cl, co.D2d[Re/z (co2)/doo2~] 
is less than but of the order of unity for both even and 
odd modes. 

The numerator of Eq. (65) is com
2 times the numerator 

of Eq. (48), which is given by Eq. (50). At low fre­
quencies the contribution of the odd modes is of order 
COD2(CO/COI>)4, and that of the even modes of order 
COD2(W/COZ))2. The latter modes in Born approximation 
give Rayleigh scattering with a scattering probability 
proportional to co4. We see from the above considerations 
that the matrix element, Eq. (65), is about the same 
size for both even and odd modes near resonance. In 
fact, we can write 

UD2(w/o)D)n 

(*'X'|*|*X)— , (71) 
s(tf--G)?)aD-*+s'i(<ai/<aD)n+1 

where s, s' = 0 ( l ) , and n=2 for even modes and rc = 4 
for odd modes. At resonance the square of the matrix 
element is given by \t\2^o)D5coi~\ in contrast with the 
Rayleigh result, | j | 2~<xW. The resonance peak is 
(COD/CO)5 times higher than the Rayleigh scattering 
expression. 

The width of the resonance will be about Aco2/coj2 

~(co//coJD)n_1 and, hence, is narrower by a factor of 
(OJI/OOD)2 for the odd modes. The value of \t\2 integrated 
over the resonance will be smaller by the same factor. 
Even for the odd mode, the integrated scattering should 
be much larger than Rayleigh scattering. 

V. DISCUSSION 

A. Future Needs 

We have made a general formulation of phonon 
scattering by an impurity in terms of the dynamic 
Greens-function matrix of the unperturbed lattice. 
Clearly, one of the first tasks to be done is to compute 
some numerical values of G(co2+ie) for simple models 
of monatomic and diatomic lattices. Then one can fill 
in the details of a plot such as Fig. 1 of the eigenvalue 
of gy as a function of co2, given a particular model of the 
perturbation y. 

One should then investigate the effect of a nonlocal 
change in force constant around a point defect in the 
lattice. In many cases, this can be calculated in terms 

of the anharmonic coupling constants and the static 
strain field around the defect.19'30 I t is important to 
investigate whether or not the long-range changes in the 
force constant qualitatively affect the results presented 
in this paper. 

B. Implications for Thermal Conductivity 

The theory of Sec. I I formally solves the problem of 
elastic scattering from a defect that has only changes 
in mass and changes in force constants. At present, it 
cannot handle the introduction of new degrees of 
freedom by, say, a molecular impurity. I t can handle 
the removal of degrees of freedom as for a vacancy. 
Here the perturbed force constants must be such that 
all bonds to the vacancy site be broken. In a realistic 
model one would expect rearrangement of the near 
neighbors so that there would be at least changed force 
constants between nearest neighbors of the vacancy 
site that are nearest neighbors of each other. One could 
make a first approximation to the virtual local modes 
by neglecting this latter effect altogether. 

If one can further restrict the broken bonds to be 
central bonds to nearest neighbors, the eigenvectors for 
the modes are given in the discussion following Eq. 
(47) for the case of (100) neighbors and in the Appendix 
for (111) neighbors. In both cases, the ^-matrix element 
near a resonance in the Ith mode is given by Eq. (65). 
Knowing e(l) we can calculate the numerator of the 
right side exactly in this model; this is not useful 
unless the Green's functions needed to compute the 
denominator are known. We must be content at present 
with the estimate (71). The effect of this resonance on 
the reciprocal relaxation time can be obtained from 
the usual expression18 for isotope scattering by replacing 
(Aw/m)2co4 by the square of the absolute value of (71). 
This gives the estimate 

CZ3^COD2(co/cO£))2w 

T r e s " 1 - , ( 7 2 ) 
Ax<?N[? (CO2-CO*2)2COD-4+S/2 (m/uD)2n+2~] 

where a? is the atomic volume, c the velocity of sound, 
and n/N the fractional concentration of defects. 

I t is fitting to inquire whether a resonance such as 
Eq. (72) has already been observed experimentally. 
Pohl15 used a similar expression to fit his data on 
nitrate-doped KC1. One suspects, however, that in this 
case any virtual local modes would come from internal 
degrees of freedom of the molecule. Such low-lying 
energy levels might be quantum mechanical in nature 
(an example is the inversion in NH3) , and would not be 
included in the classical formalism presented here. 
The "dip-" or "high-"temperature resonant-like be­
havior found by Walker and Pohl16 for monatomic 
impurities such as I~~ and Na + in KC1 occurred at the 
same temperature in all cases. The position of resonance 
in the theory given here is quite sensitive to small 

30 H . Bross, Physica Sta tus Solidi 2, 481 (1962). 
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details of the perturbation, and it is hard to imagine 
how such a theory could predict resonances at the same 
place for dissimilar impurities. An interesting suggestion 
has been recently made by Wagner31 to explain the 
results of Walker and Pohl; he discusses a three-phonon 
scattering process in which a running-wave phonon is 
inelastically scattered from a true local mode. 

Gebhardt14 found a very large low-temperature 
thermal resistivity in KBr that was x-rayed at low 
temperatures and thus contained negative ion vacancies 
together with the anticenter, presumably an interstitial 
halide ion. When the anticenter was an interstitial H~ 
ion, the resistivity was an order of magnitude less. 
The simplest explanation is that the anomalously 
high resistivity was due to the interstitial halide ion. If 
this be true, there could be no resonant scattering from 
virtual modes because the expected changes in force 
constant should be large and positive. This brings up 
the possibility of hard-core scattering and the approxi­
mation of Eq. (34). The m in the denominator would 
have a strong enough frequency dependence to give an 
anomalous (i.e., non-Rayleigh) frequency dependence 
to the relaxation time. Another possibility is that the 
negative ion vacancy has one or more low-frequency 
virtual modes that are somehow quenched by the 
nearby presence of an interstitial H~ ion but not by a 
nearby halide ion. 
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APPENDIX: EIGENVECTORS OF gy FOR CHANGED 
CENTRAL FORCE CONSTANTS TO (110) 

NEAREST NEIGHBORS 

We begin by the parity splitting of Eq. (46), where 
now i refers to any of the 12 (110) directions. The 
character table for the even and odd modes is shown 
in Table II. We need only six directions after the above 

31 Max Wagner, Phys. Rev. 131, 47 (1963). 

TABLE II. Character table for the reducible representations 
formed by even and odd combinations of displacements along the 
12 (110) directions in the group 0. 

8C3 3C2 6C2 6C4 

Even 
Odd 0 = Fi+F2 

splitting, which we take to be (110), (110), (101), 
(101), (011), and (011). The eigenvectors are found 
to be 

EvenF2: 2-*[£(110)-E(110)], 
2-*[E(011)-E(011)], 
2-*[£(101)-£(101)]. 

Even Ax\ 6-*[£(110)+£(101)+£(011)+£(110) 
+E(10l )+E(0 l l ) ] . 

Even E: 3-*[JE(110)+£(110)]-12-*[E(011) 
+£(011)+E(101)+£(10l)], 

| [E(011)+£(0l l ) -£(101)-£(101)] . 

OddF2: i[O(011)+O(011)-O(101)+O(101)], 
| [-O(011)+O(0ll)+O(110)+O(Il0)], 
iC-O(110)+O(110)+O(101)+O(101)]. 

OddFi: i[O(011)+O(011)+O(101)-O(10l)], 
|[O(011)~O(0ll)+O(110)+O(110)], 
i[O(110)-O(110)+O(101)+O(10l)]. 

The eigenvectors e(i) are the coefficients of E(i) or 
0(i) in the above expressions. The eigenvalues JJL of gy 
can be obtained from Eqs. (47), (48), and a slight 
generalization of Eq. (50) in terms of the e(i). The 
expressions to use are 

Even Modes: 

M(co2_,-e)==2comW-1 E [ E sm(k-at)(E^i)e(i)J 
k\ i 

Xim^-^-h)-1. (Al) 
Odd Modes: 

M(o>2-ie) = 2comW-12: { E [cos(k-a*)-i;|(S»-*)e(*))* 
k\ i 

Xfaa ' -w ' - i e ) - 1 . (A2) 

Again, a represents the nearest neighbor separation. 


